|
|||
Paper FoldingOften, when inserting a paper into an envelope, you have to fold the paper one or more times to make it fit. Depending on how you fold it, different parts of the original view will be visible after the folding. You are to write a program which 1) calculates which part of the paper is at the front given a sequence of foldings, 2) calculates how to fold a paper given the wanted visible part. There are 8 possible different ways to fold a paper if you want to halve the size of the paper. Those are:
In this problem, the size of the paper is 1048576 × 1048576 units (by pure coincidence, this means that the length of the sides of the paper after up to 20 foldings will always be an integer). The coordinates of the top left corner of the paper is (0,0) and the bottom right (1048576,1048576). This is the case for both the front of the paper and the back. Thus, if you would (for some reason) turn the paper by flipping it horizontally, you would have the coordinate (0,0) to your upper right. For instance, if your first fold is a “t”, the top half of the paper is folded, so the top half of the backside of the paper appears on the front. The visible part (the front) will then be (0,0) – (1048576,524288) from the back side of the original view. You may assume that the foldings are razor-sharp. In reality, it would be next to impossible to fold a paper in half 20 times! Input SpecificationThe first line of the input contains an integer n, which is the number of cases to follow.
Next follow n lines, each describing either 1) a folding sequence or 2) a wanted
visible part. A folding sequence is described as a string containing between 1 and 20
characters from the set of valid folding characters (“l”, “r”,
“t”, “b”, “L”, “R”, “T”,
“B”). A visible part is given in the format
(x1,y1)–(x2,y2) S, where
(x1,y1) and (x2,y2) are the coordinates of the corners of
the part (x1 < x2, y1 < y2),
and S is either Output SpecificationFor each input line, you should output one line in the exact same format as the input (but for the opposite case!). See sample output for details. In case there are more than one folding sequence (you may assume there is at least one) yielding the desired part, you should output the lexicographically smallest of them. That is, the preference order of the foldings should be “B”, “L”, “R”, “T”, “b”, “l”, “r”, “t”. Sample Input
Output for Sample Input
|
|||
University of Debrecen; Faculty of Informatics; v. 09/30/2024 |