

Dark RoadsEconomic times these days are tough, even in Byteland. To reduce the operating costs, the government of Byteland has decided to optimize the road lighting. Till now, every road was illuminated all night long, which cost 1 Bytelandian Dollar per meter and day. To save money, they decided to no longer illuminate every road, but to switch off the road lighting of some streets. To make sure that the inhabitants of Byteland still feel safe, they want to optimize the lighting in such a way that after darkening some streets at night, there will still be at least one illuminated path from every junction in Byteland to every other junction. What is the maximum daily amount of money the government of Byteland can save, without making their inhabitants feel unsafe? Input SpecificationThe input contains several test cases. Each test case starts with two numbers m and n, the number of junctions in Byteland and the number of roads in Byteland, respectively. The input is terminated by m = n = 0. Otherwise, 1 ≤ m ≤ 200 000 and m – 1 ≤ n ≤ 200 000. Then follow n integer triples x, y, z, specifying that there will be a bidirectional road between x and y with length of z meters (0 ≤ x, y < m and x ≠ y). The graph specified by each test case is connected. The total length of all roads in each test case is less than 2^{31}. Output SpecificationFor each test case, print one line containing the maximum daily amount the government can save. Sample Input
Output for Sample Input


University of Debrecen; Faculty of Informatics; v. 03/01/2019 