

Copying BooksBefore the invention of book printing, it was very hard to make a copy of a book. All the contents had to be rewritten by hand by socalled scribers. The scriber had been given a book, and after several months, he finished its copy. One of the most famous scribers lived in the 15th century, and his name was Xaverius Endricus Remius Ontius Xendrianus (Xerox). Anyway, the work was very annoying and boring. And the only way to speed it up was to hire more scribers. Once upon a time, there was a theater ensemble that wanted to play famous Antique Tragedies. The scripts of these plays were divided into many books, and actors needed more copies of them, of course. So they hired many scribers to make copies of these books. Imagine you have m books (numbered 1, 2, …, m) that may have different number of pages (p_{1}, p_{2}, …, p_{m}), and you want to make one copy of each of them. Your task is to divide these books among k scribers, k ≤ m. Each book can be assigned to a single scriber only, and every scriber must get a continuous sequence of books. That means there exists an increasing succession of numbers 0 = b_{0} < b_{1} < b_{2} < … < b_{k – 1} < b_{k} = m such that the ith scriber gets a sequence of books with numbers between b_{i – 1} + 1 and b_{i}. The time needed to make a copy of all the books is determined by the scriber who was assigned the most work. Therefore, our goal is to minimize the maximum number of pages assigned to a single scriber. Your task is to find the optimal assignment. Input SpecificationThe input consists of N test cases. The first line of the input contains only the positive integer N. Then follow the cases. Each test case consists of exactly two lines. On the first line, there are two integers m and k, 1 ≤ k ≤ m ≤ 500. On the second line, there are the integers p_{1}, p_{2}, …, p_{m}, separated by spaces. All these values are positive and less than 10 000 000. Output SpecificationFor each test case, print exactly one line. The line must contain the input succession p_{1}, p_{2}, …, p_{m} divided into exactly k parts such that the maximum sum of a single part should be as small as possible. Use the slash character (“/”) to separate the parts. There must be exactly one space character between any two successive numbers and between a number and the slash. If there is more than one solution, print the one that minimizes the work assigned to the first scriber, then to the second scriber, etc. But each scriber must be assigned at least one book. Sample Input
Output for Sample Input


University of Debrecen; Faculty of Informatics; v. 03/01/2019 