Programming contests

ECN programozó csapatverseny, 2018. május 12.

May 12, 2018, 10:15 AM – May 12, 2018, 3:15 PM

Circular Matrix Matching

A p × r matrix B = (Bij)0 ≤ i < p, 0 ≤ j < r occurs in m × n matrix A = (Aij)0 ≤ i < m, 0 ≤ j < n starting at position (k, l) if Bij = Ak + i, l + j for 0 ≤ i < p, 0 ≤ j < r, and mnpr > 0, where the indices are considered circularly. For example, let:

B occurs in A beginning at positions: (0, 2), (2, 5), and (3, 6) (positions of underlined elements in the matrix).

For given B and A, find all starting positions at which B occurs in A.

Input Specification

The first line of the input contains the number of test cases. For each test case, the first line contains the number of rows p and the number of columns r for matrix B, separated by a space. Each of the next p lines contains the elements of a row of matrix B, each element being a character, separated by a space. The next line contains the number of rows m and the number of columns n for matrix A, separated by a space. Each of the next n lines contains the elements of a row of matrix A, each element being a character, separated by a space.

Input Limits and Constraints

  • 1 ≤ p ≤ 100, 1 ≤ r ≤ 100, 1 ≤ m ≤ 100, 1 ≤ n ≤ 100;
  • each matrix element is a character.

Output Specification

For each test case, print in a line #i, where i is the number of the test case, followed by a line containing the found positions in lexicographic order in the form (k,l), separated by a space. If there is no solution, leave a blank line.

Sample Input

  1. 2
  2. 2 3
  3. a b c
  4. g a b
  5. 4 7
  6. a b a b c f g
  7. g a g a b a b
  8. c a b 4 5 a b
  9. b c d e f g a
  10. 2 2
  11. a a
  12. a a
  13. 5 5
  14. a a a a a
  15. a a a a a
  16. a a a a a
  17. a a a a a
  18. a a a a b
download as text file

Output for Sample Input

  1. #1
  2. (0,2) (2,5) (3,6)
  3. #2
  4. (0,0) (0,1) (0,2) (0,3) (0,4) (1,0) (1,1) (1,2) (1,3) (1,4) (2,0) (2,1) (2,2) (2,3) (2,4) (3,0) (3,1) (3,2) (4,0) (4,1) (4,2)
download as text file
University of Debrecen; Faculty of Informatics; v. 09/30/2024