Programming contests

ECN programozó csapatverseny, 2018. május 12.

May 12, 2018, 10:15 AM – May 12, 2018, 3:15 PM

p_order

Let a be a list that stores a permutation a = (a0a1a2, …, an – 1) of order n, and let p be a natural number. We say that the permutation is p-sorted if for any x > 0 index, it is true that ax > a[(x – 1) / p], where [(x – 1) / p] is used to denote the integer part of (x – 1) / p.

For example, (1,3,2,5,4) is a 3-sorted order 5 permutation, because a1 = 3 > 1 = a0, a2 = 2 > 1 = a0, a3 = 5 > 1 = a0, a4 = 4 > 3 = a1.

There exist altogether 12 different order 5 permutations that are 3-sorted. These are the following: (1,2,3,4,5), (1,2,3,5,4), (1,2,4,3,5), (1,2,4,5,3), (1,2,5,3,4), (1,2,5,4,3), (1,3,2,4,5), (1,3,2,5,4), (1,3,4,2,5), (1,3,5,2,4), (1,4,2,3,5), (1,4,3,2,5).

Given n and p, calculate the number of p-sorted order n permutations modulo 666013.

Input Specification

The input has 10 lines, each of which containing natural numbers n and p, separated by a space (1 < p < n ≤ 600 000). Each tuple represents a problem that needs to be solved.

Output Specification

The output needs to contain 10 numbers in separate lines, giving the corresponding answers for the 10 input problems.

Sample Input

  1. 5 2
  2. 5 3
  3. 6 3
  4. 1234 8
  5. 5000 100
  6. 141414 200
  7. 414141 101
  8. 345 234
  9. 54321 321
  10. 600000 81
download as text file

Output for Sample Input

  1. 8
  2. 12
  3. 40
  4. 530546
  5. 141922
  6. 142664
  7. 471427
  8. 526978
  9. 151098
  10. 596797
download as text file
University of Debrecen; Faculty of Informatics; v. 09/30/2024